Afferent control of locomotor CPG: insights from a simple neuromechanical model.
نویسندگان
چکیده
A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II) and force-dependent (type Ib from the extensor) feedback to the CPG. We show that afferent feedback adjusts CPG operation to the kinematics and dynamics of the limb providing stable "locomotion." Increasing the supraspinal drive to the CPG increases locomotion speed by reducing the duration of stance phase. We show that such asymmetric, extensor-dominated control of locomotor speed (with relatively constant swing duration) is provided by afferent feedback independent of the asymmetric rhythmic pattern generated by the CPG alone (in "fictive locomotion" conditions). Finally, we demonstrate the possibility of reestablishing stable locomotion after removal of the supraspinal drive (associated with spinal cord injury) by increasing the weights of afferent inputs to the CPG, which is thought to occur following locomotor training.
منابع مشابه
A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry.
In this paper we analyze a closed loop neuromechanical model of locomotor rhythm generation. The model is composed of a spinal central pattern generator (CPG) and a single-joint limb, with CPG outputs projecting via motoneurons to muscles that control the limb and afferent signals from the muscles feeding back to the CPG. In a preceding companion paper (Spardy et al 2011 J. Neural Eng. 8 065003...
متن کاملA Neuromechanical Model of Spinal Control of Locomotion
We have developed a neuromechanical computational model of cat hindlimb locomotion controlled by spinal central pattern generators (CPGs, one per hindlimb) and motion-dependent afferent feedback. Each CPG represents an extension of previously developed two-level model (Rybak et al. J Physiol 577:617–639, 2006a, J Physiol 577:641–658, 2006b) and includes a half-center rhythm generator (RG), gene...
متن کاملComputing Motion Dependent Afferent Activity During Cat Locomotion Using a Forward Dynamics Musculoskeletal Model
The structure and function of mammalian locomotor central pattern generators (CPGs) and their control by afferent feedback in vivo are not completely understood. The aim of this study was to develop a forward dynamics model of cat hindlimbs that using neural or muscle activity as input generates realistic locomotion mechanics and motion-dependent afferent activity. This model can be combined wi...
متن کاملPredictive and reactive tuning of the locomotor CPG.
The neural control of locomotion involves a constant interplay between the actions of a central pattern generator (CPG) and sensory input elicited by bodily movement. With respect to the CPG, recent analysis of fictive locomotion has shown that durations of flexion and extension tend to covary along specific lines in plots of phase duration versus cycle duration. The slopes of these lines evide...
متن کاملModelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1198 شماره
صفحات -
تاریخ انتشار 2010